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Abstract —A method is described for the transient analysis of

10SSY coupled transmission line networks with nonlinear ele-

ments. The method combines the asymptotic waveform evalua-

tion technique with a piecewise decomposition algorithm. Two to

three orders of magnitude speedup can be achieved relative to
previously published methods with comparable accuracy. The

method is useful for delay and crosstalk simulation of high
speed VLSI interconnects.

I. INTRODUCTION

R APID advances’ in the development of VLSI circuit

technology and packaging techniques are yielding

larger chips with smaller and faster devices, As a result,

the interconnect delay time is often significantly longer

than the device switching time. In addition, as intercon-

nection densities and switching speeds increase, the elec-

trical length of interconnects becomes a significant frac-

tion of a wavelength and conventional lumped-impedance

models can no longer be used for accurate simulation of

delay and crosstalk. Instead a distributed model for the

interconnect should be used in this case [1]–[3].

Several methods have been proposed for the analysis of

networks which contain coupled transmission lines

[4]-[12]. In most cases, the transmission line has been

analyzed either by using a series of lumped models in the

time domain, or by using the frequency domain transfor-

mation. In general, these techniques provide a detailed

analysis of delay and crosstalk, but they require more

computer time than the circuit designer can normally

afford. The analysis time increases rapidly with circuit

size and degree of cross-coupling. This creates the need

for a computationally less expensive method which can

adequately approximate the circuit response.

In this paper we present a new method for the analysis

of 10SSYcoupled transmission line networks with linear or

nonlinear elements. The method has the following advan-
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tages:

1) Two or three orders of magnitude speedup com-

pared to previous methods with comparable accu-

racy,

2) Can handle general transmission line networks with

no topological or electrical constraints.

The proposed method is based on asymptotic waveforlm

evaluation (AWE) [13]–[ 15] in which the transient r(e-

sponse is approximated by matching the initial conditions

and the first 2 q – 1 moments of the exact response to a

q-pole model. Analysis of 10SSYcoupled transmission lines

with linear elements is described in [15]. The emphasis of

this paper is to extend the AWE method to handle the

nonlinear case.

In Section II, a general method based on the modified

nodal admittance (MNA) matrix is presented for the

formulation of the network equations. Section III-A is a

review of the AWE method and its application to the

analysis of 10SSYcoupled transmission lines with linear

elements. Section III-B describes how AWE can be used

to calculate the response of a linear network to an arbit-

rary piecewise linear signal. Extension of the AWE

method to the case of nonlinear elements is described in

Section IV. Section V presents a summary of the analysis

and its computational efficiency. Some numerical exam-

ples are presented in Section VI. Details of the transmis-

sion line moment calculations required for the AWE

analysis are given in the Appendix.

H. FORMULATION OF THE NETWORK EQUATIONS

Consider a nonlinear network which contains lumped

components and arbitrary linear subnetworks. The linear

subnetworks may contain distributed components. With-

out loss of generality the modified nodal admittance ma-

trix equations of the network can be written in the form

[16] ‘

Cju(t)+lf’v(t)+ f Dkik(t) –e(t)–f(v(t)) =()
k=l

(1)
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where

Zxt)e!x N is the vector of node voltage waveforms

appended by independent voltage source current, linear

inductor current, nonlinear capacitor charge and non-

linear inductor flux waveforms.

C ● ~ ‘XN and W G M ‘XN are constant matrices with

entries determined by the lumped linear components,

~~=[di,,], di,j={O,l}, ic{l,2,. . “,fV}, j={l,2, ” . .,n~}

with a maximum of one nonzero in each row or column

is a selector matrix that maps i~(t) ● Y1‘k the vector of

currents entering the linear subnetworks k, into the

node space !E N of the network T,

e(t) ● !RN is the vector of independent sources,

f(u): !XN+!EN ‘1s a function describing the nonlinear

elements of the network.

The first, second and fourth terms in (1) cover the linear

lumped components and independent sources. The fifth

term covers the nonlinear components. The third term

connects the terminal currents of the linear subnetworks

to the rest of the network through the mapping matrix

D~.

Let the frequency domain equations of the linear sub-

network k be in the form

PkVk(,s) + QkIk(,s) = O (2)

where V~ and 1A represent the Laplace domain terminal

voltages and currents of the subnetwork k, respectively.

In the special case where the subnetwork k consists of

a multiconductor transmission line system, P~ and Q~ can

be described in terms of the line parameters (Section

III-B).

III. CASE 1: LossY COUPLED TRANSMISSION LINES

WITH LINEAR ELEMENTS

where

s is the complex frequency,

Z(s) =[v(s) 1,(,s) 1,(s) ““” INJS)]’,

Y(s) =

“sC+W D1 D2 ,.. DN s

b ● M‘, b, c { – 1,0, 1} is a constant vector with entries

determined by the independent sources.

To approximate the impulse response z(t) using the

asymptotic waveform evaluation technique (4) is ex-

panded in a Maclaurin’s series of the form

z(s) = ~ Mns” (5)
n=O

where

+%l.=o

Mn = ‘Sn
~!

(6)

The moments m; =[kfn](,); n = 0,1,2,...,2q –1 of an

output i are then matched to a lower order frequency

domain function in the form

[2”(s) 1(1)=,:1+. (7)

The approximate time domain transient solution is then

(8)

A. Approximating the Impalse Response of a Linear

Network
Given the moments [M. ](,), evaluation of the poles p; and

the residues k;; j = 1,2,. . s, q is described in details in
When the network does not contain any nonlinear [13]–[14].

elements, j(u) = O, the impulse response of (1) can be Using (4) and (6), a recursive equation for the evalua-
written in the complex frequency domain in the form tion of the moments can be obtained in the form

1“

1PND~,,

L)l D2 . . . DN

II
v(s)

QI o ‘“ 0’ ~,(s)
o Q2 ‘e- o Iz(s)
. . . . . o“
. . . . . o“

o 0 ““” QN, IN~ S)

or

Y(s)z(s)=b

——

E

o

0

0

with

(4)

n [Y]@)Mn_,
[Y](O’Mn=- ~ r, (9)

~=1

(3)
where

[Y]@=Y(s=o),

[1[Y](r)= :Y(s)
s=”

[Y]%!fo = b. ( 10)
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Next the derivatives of Y are obtained as

[Y]’”=

and

o 0 ““” o

Qf) ,0 . . . 0

0 Qf) . . . ()

. . . 0

.,. 0

0 0 ““” Qf+

o . . . 0

0 . . . 0 1

(11)

1P$)D$, Os

. . . 0

0 . . . Q$~ I
(12)

Evaluation of the derivative: Pf) and Q~) is described

in [15] for the case where the subnetwork consists of a

multiconductor transmission line system. A summary is

given in the Appendix.

B. Approximation of the Response of a Linear Network to

an Arbitraiy Piecewise Linear Input Waveform

The analysis method described in Section III-A pro-

vides a closed form approximation, (7), to the Laplace

domain impulse response of the network. This form is

equivalent to the closed form time domain impulse re-

sponse given by (8). Network response to a waveform that

can be represented in the Laplace domain as a ratio of

two polynomials can be calculated by carrying out sym-

bolic multiplication in the Laplace domain and reducing

the result to the form of (7). Exact conversion to the time

domain is possible using (8). Essentially the linear net-

work is approximated by the impulse response z*(t) and

exact calculations are made using the approximate re-

sponse and the applied waveforms.

As an example consider an applied ramp waveform.

Including the ramp in (7) gives

[z*(s) lr=,:1s2(s~P)

1

(13)

where [Z* (s)], is the desired output response due to the

ramp input. Completing the fraction and converting to

the time domain yields

[z”(t) ],=ao+alt+ ~ k~ep’ (14)
j+

where ao, al and k; are constants.

This method can be extended to arbitrary piecewise

linear waveforms as follows. Let x(t) be a piecewise

L
x(t)

B~
. . . . . .

~.\ . . . .

Xo xl

BI

Fig. 1. Piecewise linear function.

linear function (Fig. 1) described by

L

x(t)= ~ (B~+A~t) [u(t–t~_l)–u(t–tJ] (15)
k=l

where

L is the number of linear segments,

and u(t) is the unit step function.

Divide the interval of analysis t = [0, T] into L equal

length intervals such that tk – tk _ ~= A and LA= T.

Equation (15) may be rewritten as

L

X(t) = ~ (Bk+Aktk_~)U~(t ‘tk_~)

k=l

+ ~ AkuJt – tk-~) (16)
k=l

where

uh(t)=u(t)–u(t– A)

uJt)=t(u(t) -u(t -A)).

Equation (16) expresses the piecewise linear function x(t)

as a scaled and shifted sum of the functions Uh(t ) and

Ug(t ). The response of a linear network to an input x(t)

can then be constructed using the response to the inputs

uh(t), ug(t) and superposition theory as

L

v(t)= ~ h(t–tk_l)( Bk+Aktk-l)
k=l

+ ~ g(t – tk_~)ftk (“17)
k=l

where h’(t) is the response of the network to the input
UJ t ) and g(t) is the response of the network to the input
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Ug(t). Using the method illustrated in (13) and (14):

lz(t)=ao[u(t) -u(t- A)]

q
+ ~ kj[u(t)ep~f– u(f – A)e~~ft–AJ] (18)

j+

g(t) =bo[u(t)–u(t– A)]

+bl[tu(t) –(t– A)u(t– A)]

+ fi k~[u(t)epJ’ – u(f – A)ep~(’-Al] (19)
j-l

where the additional constants result from the partial

fraction expansion. Substituting for A~ and B~ in (17)

yields

When the system has more than one output, h(t), g(t)

and u(t) will be column vectors. For a multiple-input

multiple-output system x~ and u(t) will be vectors and
h(t) and g(t) will be matrices.

IV. CASE 2: LossY COUPLED LINES WITH

NONLINEAR ELEMENTS

When nonlinear elements are present ~(v) #O. In this

case the nonzero entries in ~(u(t)) are replaced by a set

of independent waveforms y(t) [17] such that

f(~(~))=~fY(f) (21)

where

Df=[diJ], d,j~{O,l}, i={l,2, ”””jiVf}, j={l,2, ”””, N}

is a selector matrix, and Nf is the number of nonzero

entries in jlv(t)).

Using (21), (1) is reduced to a set of linear differential

equations in the form

(22)

With reference to Fig. 1, let y(t) be a piecewise linear

waveform. As described in Section III-B AWE is used to
solve (22) using the waveforms Uk(t ) and Ug(t) in place of

the input y(t). The network equations will be solved once

per interval at the time t>, t,_ ~ < ty < t,. The response of

the linear network will be the sum of the responses due to

the independent inputs and the waveforms Y(t)

L

z$=u(t; )= ~ H(t: –t&l)Yk-l

k=l

L

+ ~ G(t:–t~_l)
yk ‘Ay&l + ~(t~) (23)

k=l

where F(t) is the response due to the independent inputs

and G(t) and H(t) are the matrices

G(t) = {gLj}; ie{l, ”””, N} j~{l,...,~f} (24)

[

Yj(t) = ‘g(t)

gq(t)=[u(t)]t Yk(t) ‘“, k+j (25)

e(t)=O

H(t) = {hiJ}; ie{l, ”””, N} j={l,.. “ , IVf} (26)

[

Yj(t) = ‘/-z(t)
hij(t)= [u(t)], yk(t)=O, k+j (27)

e(t)=O.

The augmenting waveforms y(t) are computed starting

with an initial guess y“(t ) and an iterative technique [3]

based on the Newton–Raphson method. Iteration contin-

ues until the waveforms y(t) satisfy the linear network

constraints (22) and the nonlinear constraints (21).

From (23) u: may be written as an explicit function of

Y,:

u,+ = R,y, + S, (28)

where

(29)

[

G(t: – t~_l)
S,= ~ ~(t:–t&~)-

A 1
Yk-1

k=l

(‘–1 G t: —tk_l)
+x

A
y~ + F(t; ). (30)

k=l

Using (28) it is possible to solve for one time point at a

time using Newton iterations in the form

[ -
~([) Y(i+l) y$O] = – [ Df~(v~(’J ) - y;(’)] (31)

[1df t* –tf_l
J= D~ZR, – ‘ A . (32)

V. COMPUTATIONAL CONSIDERATIONS

A. Summary of the Computational Steps

There are three separate steps in the analysis:

1) AWE is used to approximate the linear network with

a set of poles and residues. Residues must be calculated

for the response at each desired output value, and each

controlling signal for nonlinear elements (Section III-A).

2) Calculation of the linear network response due to

independent sources as well as the sources Ulz, and u~.

The approximate poles and residues calculated in the

previous stage are combined with exact Laplace domain

representations of the input signals. The resulting closed

form expression has an exact time domain representation

(Section III-B).
3) Iterative solution of the nonlinear equations using

superposition of the linear network responses calculated

in 2 (Section IV).
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~n=.2Q 5nH
C=100pF/m

C=100pF/m

lPT’%” ’21P

L=f+OnH/m
—

length= .03rn

C=100pF/m ‘lpF
L=60rrH/m
length=.03m 1—

m

J_.
Fig. 2. Network for example 1, interconnect model with transmission lines,

TABLE I

MATRIX OPERATIONCOUNT COMPARISONOF ANALYSIS ALGORITHMS

Operation FFT “ NILT AWE

LU Nl MxNt 1

F/B N, XN1 MxN,xN, 2xPxNC

Nl is the number of frequency points, usually in the range 2000< Nl

<20000, Nt is the number of time points, usually in the range
50< N,< 200, M is the number of poles in the NILT approximation,

usually in the range 5< M <11, N, is the number of independent
inputs, P is the order of the AWE” approximation.

B. Computational Cost

The AWE analysis method requires a single LU de-

composition of the MNA matrix. This makes AWE less

computational expensive than other comparable methods

for obtaining the time domain response of a linear net-

work described in the frequency domain. Table I com-

pares the major matrix operation requirements of AWE

analysis with FFT and numerical inversion of the Laplace

transform (NILT) [7] for a multiple-input multiple-output

system such as a nonlinear network being analyzed by the

method described in Section IV. A complex network with
many r-eelections requiring thousands of frequency points
for the FFT is assumed. The comparison shows that even

for a typical medium sized interconnect network AWE

could be hundreds of times faster than the FFT approach.

Example 3 compares the run times of the AWE algorithm

and HSPICE time domain transient analysis.

AWE requires only a small amount of memory as only

the approximate poles and residues need to be stored. [n

contrast FFT and NILT analysis require storage of the

entire frequency or time domain response.

A multiple-input multiple-output linear network has a

unique characteristic polynomial shared by all responses.

Using the AWE approximation each input-output rela-

tionship is approximated by a different set of poles.

Although the order of the approximating polynomial is

normally low (3rd–7th), the CPU time required to find

the poles could contribute a significant portion to the

total computational cost. It is possible to use a common

set of poles for all or some of the responses reducing tlhe
required computations. Three approaches are easily iden-

tified:

1) Use one set of poles for all responses.

2) Use one set of poles for each input set.

3) Calculate poles for every response.

The first approach uses a single set of poles for all

calculations. This requires one pole finding process. The

second approach uses a different set of poles for each
input point. Thus the second approach requires IVf + 1

sets of poles, where Nf is the number of nonzero entries
in jlv(t )) as described in (21). The third and most

accurate approach requires a different set of poles for

each response or N% (N” + 1) pole sets, where N. is the

number of outputs. The fewer poles used the lower’ the
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Fig. 3. Pulse response VI of the network shown in Fig. 2.

0.035 ~

,,, ,,

--- ProposedMethod

0.025-
- HSPICE

~ 0!02 - ~~
.
~

,.

; 0.015 - ~~ ,.

g

o
0,01 -

0.005 -

0 ‘-

L ,,

-0.005I I
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1,8 2

Time(seconds) Xlo-s

Fig. 4. Pulse response V2 of the network shown in Fig. 2.

accuracy of the calculated responses. The loss of accuracy the transmission lines are Iossless simulation results can
is illustrated in Example 4. be compared with HSPICE.

Example 2

VI. COMPUTATIONAL RESULTS AND COMPARISONS Consider the network shown in Fig. 6. Both of the

Example 1 transmission lines are O.lm long. The two conductor line

A multiple transmission line network with nonlinear
has the following parameters:

[

elements is shown in Fig. 2. The input is a 10 ns pulse ~ = 494.6 63.3 1 [~=62.8 –4.9
with 1 nanosecond rise and fall times. The nonlinear 63.3 494.6

nH/m 162gpF/m
–4.9 .

functions are defined as ~(i)= 50i + 21.5ilz3 and g(i)=

[1~=75 15
50i + ii/3. Output waveforms are shown in Figs. 3–5. As

[ 115 75 ‘/m ‘= -d; -O:; ‘/m
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-0.05 I I 1

0 0.2 0.4 0,6 0.8 1 1.2 1.4 1.6 1.8 2

Tme(seconds) ~[(J-8

Fig. 5. Pulse response V3 of the network shown in Fig. 2.

and the parameters of the four conductor line are

[494.6 63.3 7.8 ‘ 0.01

1~ = 63.3 494.6 63.3 7.8

7.8 63.3 494.6 63,3

I

nH/m

0.0 7.8 63.3 494.6

r 62.8 -4.9 -0.3 0.01
c= 1–4.9 62.8 –4.9 –0.3

–0.3 –4.9 62,8

J

_ 4 g pF/m

0.0 –0.3 –4.9 62:8

r50 10 1 0.01

[

0.1 –0.01 – 0.001 0.0

G=
–0.01 0.1 –0.01
–0,001 –0.01 0.1 1~}filS/m

0.0 –0.001 –0.01 0:1

Fig. 7 shows the, response at node b as calculated using

the proposed method, and by numerical inversion of

Laplace transformation (NILT) [7]. The applied voltage is

a 3 ns pulse with 1 ns rise and fall times.

Example 3

The efficiency of the proposed technique is shown by

comparison with HSPICE in Table II. The network of
Example 1 with Iossless lines was cascaded to achieve the

indicated number of transmission lines. HSPICE ran tran-

sient analysis with the nonlinear elements modeled by

dependent sources. Run times were measured on a SUN

3/60. A speed factor of approximately 45 to 1200 was

obtained, depending on the size of the network. Excellent

agreement between the two methods similar to that shown

in Fig. 4 was obtained for all results.

Example 4

As mentioned in Section V.B it is possible to further

reduce computational requirements by reducing the num-

ber of pole sets calculated. Fig. 8 illustrates the diffcx-

ences between the three approaches described in Section

V-B. It should’ be noted that while the first two ap-

proaches have peak errors around 20% they still give

accurate measures of the delay times.

VII, CONCLUSION

A method has been presented for the analysis of lossy

multiconductor transmission line networks with linear or

nonlinear elements. The method extends the asymptotic

waveform evaluation technique to handle nonlinear com-

ponents. A piecewise decomposition technique is used in

which the nonlinear entries in the network equations are

replaced by a set of time-dependent waveforms. The

response of the resulting linear net!ivork is approximate ed

by matching the first 2CI – 1 mo’ments to a lower q-pole

model. An iterative technique is described for the evalua-
tion of the parameters defining the augmenting wave-

forms. The proposed simulation algorithm offers two to

three orders of magnitude speedup compared to previ-

ously published methods with comparable accuracy and

can be used for efficient estimation of delay and crosstalk

of high-speed VLSI interconnects.
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Fig. 6. Network for example 2, interconnect models with Iossy coupled transmission lines and nonlinear elements.

TABLE II

CPU TIME COMPARISON

Circuit Number of Node Lumped CPU Seconds

# TL Count Elements PM HSPICE

1 35* 101 145 2.62 256

2 35** 101 145 5.61 261

3 105* 301 435 6.05 7702

*linear elements.
** nonlinear elements.
PM-proposed method,

APPENDIX

THE MULTICONDUCTOR TRANSMISSION

LINE MOMENTS

Details of the evaluation of the moments can be found

in [15]. For the sake of completeness a summary is given

here.

For a transmission line uniform along its length with an

arbitrary cross section the derivatives Pj’) and Q~) and

hence the moments may be derived from parameters

describing the line. The cross section with N signal con-

ductors, can be represented by the following NxN matri-

ces of line parameters: the inductance per unit length L,

the resistance per unit length R, the capacitance per unit

length B, and the conductance per unit length G.

Let -y; be an eigenvalue of the matrix ZLYL with an
associated eigenvector S~, where

Z~=R+sL (33)

Y~=G+sB. (34)

It can be shown [15] that the terminal voltages and

currents are related by (2) where

(35)

El and E2 are diagonal matrices defined in terms of the

eigenvalues,

(exp( – Y,.D) +exp(7mD)
El = diagonal

2 }

~= l,... , N (37)

(
exp(– Ym~)–exP(Ymll)

E2 = diagonal
2 )

~= l,...
, N, (38)

where D is the length of the line,

S,, is a matrix with the eigenvectors S~ in the columns,

s, = z; lSL,Q,

Q is a diagonal matrix with fl,.,~ = y~.

From (35) and (36) the moments required in (12) are

‘(’)=[K%:1 ‘3’)

‘(’)=[’22’:1 ’40)
To find a closed-form expression for P(r) and Q(r)

Leibnitz’s rule is used to expand the derivatives in (39)
and (40) in terms of the derivatives of the eigenvectors s,,

and the eigenvalues y;.

Consider S,,EISj 1 = @ or S,,El = 0S,,, differentiation

yields

[

Q = S,)E2SZ-1 O 1
~=1’

SIEIS1-l – U
(36) which gives derivatives for @ in terms of lower order

derivatives and the derivatives of SC and El. Differentiat-
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0.35, ,

Tme(aecortda) Xlo-s

Fig. 7. Pulse response Vb of the network shown in Fig. 6.

0.05

- Approach 1

--- Approach 2

* Approach 3

--- HSPICE

2 0.02 -
?
~

.&
a 0.01-
0

●

/.,
h

-0.01-

/

.il.oz~
o 0.2 0.4 0.6 0,8 1 1,2 1.4 1,6 1,8 2

Time(seconds) Xlo-a

Fig. 8. Comparison between three different approaches for obtaining the response of the network shown in Fig. 2.

ing El gives problem

2115

[,

.D

([ )
D (~) (1) _

1

[y;u- zLYL]sm = o (43)—— ~–?mD _
2

eYm ] y~
where U is the identity matrix. The first derivative can beE~ + 1, = diagonal ~ .

~ ~ [e-,m.o _ eymD1(~-.Jy:+,, ; obtained as

~=1

1=1

dS.

~= l,... , N. (42) [1[Y3J- Z.1’. 2Ynsn] ‘s - :2 Y sm. (44)
Next, the derivatives of the eigenvalues and eigenvectors dy~ ‘ds LL

are evaluated using the solution of the eigenvalue ds
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Equation (44) represents a system of n equations with

(n+ 1) unknowns. To solve this system another equation

normalizing the eigenvector Sn such that S~ S’m= 1 or

dS~
s; —

ds
= o. (45)

is added to (44) yielding

dS.

[ 1[=] [ 1

Yi?W z.y. ‘hIrnsrn (is ~z Y

dym
= ds L L Sm (46)

s; o
ds

o

Higher order derivatives are obtained recursively as

##z+l)” n

M
S$-r+l)

+ x (;)~(’) (.-.+1)
~$r+l)

y=l 7rn

[

$J;)[zpyp](’’-’+’)——

o
where

I‘:) (47)

[

~= Y;u– ‘LYL “27msm

s; 1o“

A similar method can be used to calculate the deriva-

(48)

tives of other terms in (39) and (40) with respect to the

derivatives of Sm and ym (47).
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