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Analysis of Lossy Multiconductor
Transmission Lines using the Asymptotic
Waveform Evaluation Technique

Tak K. Tang, Member, IEEE, Michel S. Nakhla, Senior Member, IEEE, and Richard Griffith

Abstract —A method is described for the transient analysis of
lossy coupled transmission line networks with nonlinear ele-
ments. The method combines the asymptotic waveform evalua-
tion technigue with a piecewise decomposition algorithm. Two to
three orders of magnitude speedup can be achieved relative to
previously published methods with comparable accuracy. The
method is useful for delay and crosstalk simulation of high
speed VLSI interconnects.

1. INTRODUCTION

APID advances in the development of VLSI circuit

technology and packaging techniques are yielding
larger chips with smaller and faster devices. As a result,
the interconnect delay time is often significantly longer
than the device switching time. In addition, as intercon-
nection densities and switching speeds increase, the elec-
trical length of interconnects becomes a significant frac-
tion of a wavelength and conventional lumped-impedance
models can no longer be used for accurate simulation of
delay and crosstalk. Instead a distributed model for the
interconnect should be used in this case [1]-[3].

Several methods have been proposed for the analysis of
networks which contain coupled transmission lines
[4]-[12]. In most cases, the transmission line has been
analyzed either by using a series of lumped models in the
time domain, or by using the frequency domain transfor-
mation. In general, these techniques provide a detailed
analysis of delay and crosstalk, but they require more
computer time than the circuit designer can normally
afford. The analysis time increases rapidly with circuit
size and degree of cross-coupling. This creates the need
for a computationally less expensive method which can
adequately approximate the circuit response.

In this paper we present a new method for the analysis
of lossy coupled transmission line networks with linear or
nonlinear elements. The method has the following advan-
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tages:

1) Two or three orders of magnitude speedup com-
pared to previous methods with comparable accu-
racy, ‘

2) Can handle general transmission line networks with
no topological or electrical constraints.

The proposed method is based on asymptotic waveform
evaluation (AWE) [13]-[15] in which the transient re-
sponse is approximated by matching the initial conditions
and the first 2q —1 moments of the exact response to a
g-pole model. Analysis of lossy coupled transmission lines
with linear elements is described in [15]. The emphasis of
this paper is to extend the AWE method to handle the
nonlinear case. ’

In Section II, a general method based on the modified
nodal admittance (MNA) matrix is presented for the
formulation of the network equations. Section III-A is a
review of the AWE method and its application to the
analysis of lossy coupled transmission lines with linear
elements. Section IT1I-B describes how AWE can be used
to calculate the response of a linear network to an arbi-
trary piecewise linear signal. Extension of the AWE
method to the case of nonlinear elements is described in
Section IV. Section V presents a summary of the analysis
and its computational efficiency. Some numerical exam-
ples are presented in Section VI. Details of the transmis-
sion line moment calculations required for the AWE
analysis are given in the Appendix.

II. - FoRMULATION OF THE NETWORK EQUATIONS

Consider a nonlinear network which contains lumped
components and arbitrary linear subnetworks. The linear
subnetworks may contain distributed components. With-
out loss of generality the modified nodal admittance ma-
trix equations of the network can be written in the form
[16]

d Ny
CEv(t)+Wv(t)+ Y. Dii(t)—e(t)— f(v(t))=0
k=1
(1)
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where

v(r)e RN is the vector of node voltage waveforms
appended by independent voltage source current, linear
inductor current, nonlinear capacitor charge and non-
linear inductor flux waveforms.

CeRV*N and W € R¥*N are constant matrices with
entries determined by the lumped linear components,
D.=ld; . d,;€{0,1},ie{1,2,---,N}, je{1,2,-- -, n;}
with a maximum of one nonzero in each row or column
is a selector matrix that maps i,(t) € R the vector of
currents entering the linear subnetworks k, into the
node space R of the network =,

e(r) € MY is the vector of independent sources,

f@): RY > RY is a function describing the nonlinear
elements of the network.

The first, second and fourth terms in (1) cover the linear
lumped components and independent sources. The fifth
term covers the nonlinear components. The third term
connects the terminal currents of the linear subnetworks
to the rest of the network through the mapping matrix
D,.

Let the frequency domain equations of the linear sub-
network & be in the form

PV (s)+ Qi L(s)=0 (2)
where V¥, and I, represent the Laplace domain terminal
voltages and currents of the subnetwork k, respectively.
In the special case where the subnetwork k consists of
a multiconductor transmission line system, P, and @, can

be described in terms of the line parameters (Section
111-B).

ITII. Cask 1: Lossy CourLED TRANSMISSION LINES
WITH LINEAR ELEMENTS

A. Approximating the Impuise Response of a Linear
Network

When the network does not contain any nonlinear
elements, f(r)=0, the impulse response of (1) can be
written in the complex frequency domain in the form

[sC+w D, D, Dyl V(s)] [E
PD; @ O 0 Ii(s)
pD, 0 @, 0 L(s) | = (3)
. . . 0 .
0 . .
PyDy, 0 0 O, || In($) 0 |
or
Y(s)Z(s)=b (4)
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where
s is the complex frequency,

Z(s)=[V(s) IL(s) L(s) NG
[sC+W D, D, Dy ]
PD! Q, ©0 0
Y(S)= P2D§ 0 0, ,
0
PDy 0 0 Qn,

beRY, b,{—1,0,1} is a constant vector with entries
determined by the independent sources.

To approximate the impulse response z(z) using the
asymptotic waveform evaluation technique (4) is ex-
panded in a Maclaurin’s series of the form

Z(s)= Y M,s" (5)
n=90
where
o .
'a's—nl[Y b]ls—0
M. = n! (6)

The moments mj,=[M,],; n=0,1,2,...,2g—1 of an
output i are then matched to a lower order frequency
domain function in the form

a g
[Z*(8)] = ; :

_
j=15"D;

(7
The approximate time domain transient solution is then

q
[2*(D)]w= X kje?".

j=1

(8)

Given the moments [Mn](, )» evaluation of the poles p; and
the residues k]’.; j=12,--+,q is described in details in
[13]-[14].

Using (4) and (6), a recursive equation for the evalua-
tion of the moments can be obtained in the form

no[¥1M,_,

YoM, =— L = ()
where
[Y]9=¥(s=0),
1= v
with
[Y19M,=b. (10)
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Next the derivatives of Y are obtained as

[ C 0 0 0 |
POD; 0 0 0
Mmpt (U
- P 0 0 O an
: 0
| PDy, 0 0 Q@_
and
0 0 0 0
POD; Q0 0
, POD! (r)
y0=| P 00 2.
: 0
PJSJC)D;V, 0 0 Q%S)
(12)

Evaluation of the derivatives P{” and Q¢ is described
in [15] for the case where the subnetwork consists of a
multiconductor transmission line system. A summary is
given in the Appendix.

B. Approximation of the Response of a Linear Network to
an Arbitrary Piecewise Linear Input Waveform

The analysis method described in Section III-A pro-
vides a closed form approximation, (7), to the Laplace
domain impulse response of the network. This form is
equivalent to the closed form time domain impulse re-
sponse given by (8). Network response to a waveform that
can be represented in the Laplace domain as a ratio of
two polynomials can be calculated by carrying out sym-
bolic multiplication in the Laplace domain and reducing
the result to the form of (7). Exact conversion to the time
domain is possible using (8). Essentially the linear net-
work is approximated by the impulse response z*(¢) and
exact calculations are made using the approximate re-
sponse and the applied waveforms.

As an example consider an applied ramp waveform.
Including the ramp in (7) gives

q

(25(s)], = &

S G-1)

(13)

where [ Z*(s)], is the desired output response due to the
ramp input. Completing the fraction and converting to
the time domain yields

q
[z¥(D)], =ag+ayt + X ke’
j=1

(14)

where ay, a; and k| are constants.

This method can be extended to arbitrary piecewise
linear waveforms as follows. Let x(¢#) be a piecewise
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Fig. 1. Piecewise linear function.

linear function (Fig. 1) described by

L
x(t) =kz_:1(Bk+Akt)[u(t_tk—l)—“(t_tk)] (15)

where
L is the number of linear segments,

Xp = Xp—1 X1l = Xple_y

A, =2 " o kTR kel

Kot 4 t,—t ’
Pl Y Pl P

and u(t) is the unit step function.
Divide the interval of analysis ¢ €[0,7T] into L equal
length intervals such that ¢, —¢,_;=A and LA=T.
Equation (15) may be rewritten as

x(t) = i (By + Aty up(t —t5_1)
k=1

b Y Agy(-n ) (16)
k=1

where
uy(1) = u(r) = u(t — A)
u (t)y=rt(u(t)—u(t—A)).

Equation (16) expresses the piecewise linear function x(¢)
as a scaled and shifted sum of the functions u,(¢) and
u,(t). The response of a linear network to an input x(t)
can then be constructed using the response to the inputs
u,(t),u,(t) and superposition theory as

L
v(t) = kglh(t =t ) (B + Agti_y)

+ i gt~ 1) A, (17)
k=1

where h(t) is the response of the network to the input
u,(t) and g(¢) is the response of the network to the input
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u,(t). Using the method illustrated in (13) and (14):
h(t) = ao[u(t) —u(t - A)]

+ i k}[u(t)epjt_u(t_A)ep/(t—A)] (18)
j=1

(1) =bo[u(t) —u(r - A)]
+ b [tu(t)—(t = A)u(r— A)]

q
+ Y K u(t)e? —u(t—A)er =] (19)
i=1
where the additional constants result from the partial
fraction expansion. Substituting for 4, and B, in (17)
vields
L L X, — X
kT Xe-1
v(t)= X h(t =t )X+ X g(t_tk—1)__A_-
k=1 k=1
(20)

When the system has more than one output, A(z), g(¢)
and v(¢) will be column vectors. For a multiple-input
multiple-output system x, and v(¢) will be vectors and
h(t) and g(¢) will be matrices.

IV. Cask 2: Lossy CouPLED LINES WITH
NoONLINEAR EiEMENTS

When nonlinear elements are present f(v)+ 0. In this
case the nonzero entries in f(v(¢)) are replaced by a set
of independent waveforms y(¢) [17] such that

f(v(1)) =Dyy(1) (21)

where
y(t) eRY
Df =[di]]7 dzj E{O’ 1}7 [ 6{172,' : .7Nf}’ ] 6{1325' ' '5N}
is a selector matrix, and N, is the number of nonzero
entries in f(v(1)).
Using (21), (1) is reduced to a set of linear differential
equations in the form
N,

d §

sz(z‘) +Wo(t)+ Y Diir(1)—e(t)—Dsy(1) =0
k=1

(22)

With reference to Fig. 1, let y(¢) be a piecewise linear
waveform. As described in Section ITI-B AWE is used to
solve (22) using the waveforms u,(z) and u (¢) in place of
the input y(¢). The network equations will be solved once
per interval at the time ¢*,¢,_, <t* <t,. The response of
the linear network will be the sum of the responses due to
the independent inputs and the waveforms y(t)

L
vi=v(tF)= L H(tf ~tr_) ¥
k=1

Ye = Yi—1

L
+ X G~ )T A F() (23)
k=

where F(¢) is the response due to the independent inputs
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and G(¢) and H(t) are the matrices
ie{l,--,N}
yj(t) = ug(t)

G(1)={g,}; je{l,-- N} (24)

g,()=[o(D]{ye(t) =0,k #j (25)
e(t)=0
H(t)={h,}; i<{l,---,N} je{l, - N} (26)

yi(t) =u, (1)
hij(t) =[e(D] { vi() =0,k # ]
e(t)=0.

(27)

The augmenting waveforms y(z) are computed starting
with an initial guess y°(¢) and an iterative technique [3]
based on the Newton—Raphson method. Iteration contin-
ues until the waveforms y(¢) satisfy the linear network
constraints (22) and the nonlinear constraints (21).

From (23) v* may be written as an explicit function of

yr:

vr*=Rryr+Sr (28)
where
G(t] —t_4)
R=—"——" 29
: X (29)
r G(tF—t,._,)
S,= ) H(lf“tk—l)‘_—k—l Y1
k=1 A
=L G(tF -1,
——(———f—llykJrF(t;*). (30)

k=1 A

Using (28) it is possible to solve for one time point at a
time using Newton iterations in the form

Ju)[yfwrl) _ yra‘)] = _ [fo(v;k(l)) — yr*m] (31)
_ daf - 1
J—Df[E}R,.———A— (32)

V. CoMPUTATIONAL CONSIDERATIONS
A. Summary of the Computational Steps
There are three separate steps in the analysis:

1) AWE is used to approximate the linear network with
a set of poles and residues. Residues must be calculated
for the response at each desired output value, and each
controlling signal for nonlinear elements (Section ITI-A).

2) Calculation of the linear network response due to
independent sources as well as the sources u;,, and u,.
The approximate poles and residues calculated in the
previous stage are combined with exact Laplace domain
representations of the input signals. The resulting closed
form expression has an exact time domain representation
(Section III-B).

3) Iterative solution of the nonlinear equations using
superposition of the linear network responses calculated
in 2 (Section IV).
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Fig. 2. Network for example 1, interconnect model with transmission lines.

TABLE I
MaTrix OPERATION COUNT COMPARISON OF ANALYSIS ALGORITHMS
Method )
Operation FFT NILT AWE
LU N, MzxN, 1
F/B N, xN; MxN,xN, 2xPxN,

N, is the number of frequency points, usually in the range 2000 < N;
<20000, N, is the pumber of time points, usually in the range
50 < N, <200, M is the number of poles in the NILT approximation,
usually in the range 5< M <11, N, is the number of independent
inputs, P is the order of the AWE approximation.

B. Computational Cost

The AWE analysis method requires a single LU de-
composition of the MNA matrix. This makes AWE less
computational expensive than other comparable methods
for obtaining the time domain response of a linear net-
work described in the frequency domain. Table I com-
pares the major matrix operation requirements of AWE
analysis with FFT and numerical inversion of the Laplace
transform (NILT) [7] for a multiple-input multiple-output
system such as a nonlinear network being analyzed by the
method described in Section IV. A complex network with
many reflections requiring thousands of frequency points
for the FFT is assumed. The comparison shows that even
for a typical medium sized interconnect network AWE
could be hundreds of times faster than the FFT approach.
Example 3 compares the run times of the AWE algorithm
and HSPICE time domain transient analysis.

AWE requires only a small amount of memory as only
the approximate poles and residues need to be stored. In
contrast FFT and NILT analysis require storage of the
entire frequency or time domain response.

A multiple-input multiple-output linear network has a
unique characteristic polynomial shared by all responses.
Using the AWE approximation each input-output rela-
tionship is approximated by a different set of poles.
Although the order of the approximating polynomial is
normally low (3rd—7th), the CPU time required to find
the poles could contribute a significant portion to the
total computational cost. It is possible to use a common
set of poles for all or some of the responses reducing the
required computations. Three approaches are casily iden-
tified:

1) Use one set of poles for all responses.
2) Use one set of poles for each input set.
3) Calculate poles for every response.

The first approach uses a single set of poles for all
calculations. This requires one pole finding process. The
second approach uses a different set of poles for each
input point. Thus the second approach requires N, -+1
sets of poles, where N; is the number of nonzero entries
in f(v(z)) as described in (21). The third and most
accurate approach requires a different set of poles for
each response or No*(Nf + 1) pole sets, where N, is the
number of outputs. The fewer poles used the lower the
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Fig. 3. Pulse response V; of the network shown in Fig. 2.
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Fig. 4. Pulse response V, of the network shown in Fig. 2.

accuracy of the calculated responses. The loss of accuracy
is illustrated in Example 4.

VI. CoMmPUTATIONAL RESULTS AND COMPARISONS

Example 1

A multiple transmission line network with nonlinear
elements is shown in Fig. 2. The input is a 10 ns pulse
with 1 nanosecond rise and fall times. The nonlinear
functions are defined as f(i)=50i +21.5;'/3 and g(i)=
50i + i'/3. Output waveforms are shown in Figs. 3-5. As

the transmission lines are lossless simulation results can
be compared with HSPICE.

Example 2

Consider the network shown in Fig. 6. Both of the
transmission lines are 0.1m long. The two conductor line
has the following parameters:

_[4946 633 [ 628 —49

L‘[ 63.3 494.6]’“H/m C‘[—4.9 62.8]pF/m
175 15 [ 01 -001

R‘[15 75]9/rn G [—0.01 0.1]5/m
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02

0.15

0.1

Output(volts)

0.05

x Proposed Method
- HSPICE

i 1 1 1 1

005 L L . L
0 02 04 0.6 0.8

Time(seconds)

1 1.2 14 16 18 2
x10-8

Fig. 5. Pulse response V; of the network shown in Fig. 2.

and the parameters of the four conductor line are

(4946 633 78 * 0.0]
_| 633 4946 633 78
L 78 633 4946 633 |"H/m
| 00 7.8 633 4946
[ 628 —-49 -03 00
_|-49 628 -49 —03
C=1_03 —49 628 —49|PF/m
| 00 -03 -49 628
[0 10 1 00
|10 s0 10 1
R=\"7  Jo s0 10 |[®¥/m
L 00 1 10 50
01  —001 —0001 0.0
| —0.01 01  —001 —0.001
G=|_o001 -001 01 —oo01 |>/™
| 00  —0001 —0.01 0.1

Fig. 7 shows the response at node b as calculated using
the proposed method, and by numerical inversion of
" Laplace transformation (NILT) [7]. The applied voltage is
a 3 ns pulse with 1 ns rise and fall times.

Example 3

The efficiency of the proposed technique is shown by
comparison with HSPICE in Table II. The network of
Example 1 with lossless lines was cascaded to achieve the
indicated number of transmission lines. HSPICE ran tran-
sient analysis with the nonlinear elements modeled by
dependent sources. Run times were measured on a SUN

3/60. A speed factor of approximately 45 to 1200 was
obtained, depending on the size of the network. Excellent
agreement between the two methods similar to that shown
in Fig. 4 was obtained for all results.

Example 4

As mentioned in Section V.B it is possible to further
reduce computational requirements by reducing the num-
ber of pole sets calculated. Fig. 8 illustrates the differ-
ences between the three approaches described in Section
V-B. It should’ be noted that while the first two ap-
proaches have peak errors around 20% they still give
accurate measures of the delay times.

VII. CoNCLUSION

A method has been presented for the analysis of lossy
multiconductor transmission line networks with linear or
nonlinear elements. The method extends the asymptotic
waveform evaluation technique to handle nonlinear com-
ponents. A piecewise decomposition technique is used in
which the nonlinear entries in the network equations are
replaced by a set of time-dependent waveforms. The
response of the resulting linear nefwork is approximated
by matching the first 2g —1 moments to a lower g-pole
model. An iterative technique is described for the evalua-
tion of the parameters defining the augmenting wave-
forms. The proposed simulation algorithm offers two to
three orders of magnitude speedup compared to previ-
ously published methods with comparable accuracy and
can be used for efficient estimation of delay and crosstalk
of high-speed VLSI interconnects.
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Fig. 6. Network for example 2, interconnect models with lossy coupled transmission lines and nonlinear elemeants.

TABLE II
CPU TimMe COMPARISON

Circuit Number of Node  Lumped CPU Seconds
# TL Count Elements PM HSPICE
1 35%* 101 145 2.62 256
2 35k 101 145 5.61 261
3 105* 301 435 6.05 7702
*linear elements.
** nonlinear elements.
PM-proposed method.
APPENDIX

THE MULTICONDUCTOR TRANSMISSION
Line MOMENTS

Details of the evaluation of the moments can be found
in [15]. For the sake of completeness a summary is given
here.

For a transmission line uniform along its length with an
arbitrary cross section the derivatives P{” and Q¢’ and
hence the moments may be derived from parameters
describing the line. The cross section with N signal con-
ductors, can be represented by the following NxN matri-
ces of line parameters: the inductance per unit length L,
the resistance per unit length R, the capacitance per unit
length B, and the conductance per unit length G.

Let y2 be an eigenvalue of the matrix Z,Y, with an
associated eigenvector §,,, where

Z, =R+sL (33)
Y, =G +sB. (34)

It can be shown [15] that the terminal voltages and
currents are related by (2) where

S,E;S;! -U

T|sESsT o (35)
S,E,S' 0

= (36)
SES' -U

E| and E, are diagonal matrices defined in terms of the
eigenvalues,

exp(*vaHexp(va)}

7 )
m=1,--- N (37)

exp(—v,,D)—exp(y,D)

),

.7N7

E| = diagonal {

E, = diagonal {

m=1,-- (38)
where D is the length of the line,

S, is a matrix with the eigenvectors §,, in the columns,
S,=Z;'S,Q,

) is a diagonal matrix with Q,, . =v,,.

From (35) and (36) the moments required in (12) are

[ [5,E,5:1]7 0

PO = o (39)
[SiE,S8. "] 0]
[15,E,5-1]" 0]

Q(r)= [ v 2R ](r) (40)
| [8.E.57] 0]

To find a closed-form expression for P) and Q¢
Leibnitz’s rule is used to expand the derivatives in (39)
and (40) in terms of the derivatives of the eigenvectors S
and the eigenvalues y?2.

Consider S,E,S,;'=® or S E,=®S,, differentiation
yields

I

L HOT i (’;)q,(n—r)sgm

r=1
n
+ X (})serER + S©E,. (41)
r=1

Which gives derivatives for ® in terms of lower order
derivatives and the derivatives of S, and E,. Differentiat-
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Fig. 7. Pulse response V}, of the network shown in Fig. 6.
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Fig. 8. Comparison between three different approaches for obtaining the response of the network shown in Fig. 2.

' ing E, gives problem , .
. ) , R

- D ([g—va - eva](.")y(n) _ [vaU-2,Y.]S,,=0 : (43)
E™+D = diaconal 2 " . where U is the identity matrix. The first derivative can be

! a8 D& ., pin—m any | obtained as :

— ¥ [e 7P — evnP] Y&+
2 r=1 . ' dsm
B . ds d
m=1,---,N. (42) [v2U-2,Y, 2v,5,] =l—z,7,s,. (44)
v Yy ds

Next, the derivatives of the eigenvalues and eigenvectors
are evaluated using the solution of the eigenvalue . ds
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Equation (44) represents a system of n equations with
(n +1) unknowns. To solve this system another equation
normalizing the eigenvector S, such that S} S, =1 or

B 0 45
m dS - Y. ( )
is added to (44) yielding
i ds,, 4
5 _m
’YmU_ ZLYL 2’YmSm ds -—ZLYL
= S 46
st, 0 || dm |7|® 0 (46)
ds
Higher order derivatives are obtained recursively as
s+ ‘ n n S(n—r+1)
m (r) m
(n+1) +r§1(")T (n—r+1)
= n (n—r+1)
ZY S
= r§0(r)[ pp] " (47)
0
where
‘U-Z2,Y, -2v,S
T= 7m L*L ‘ym m (48)

St 0

A similar method can-be used to calculate the deriva-
tives of other terms in (39) and (40) with respect to the
derivatives of S, and v,, (47).
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